AgAu bimetallic Janus nanoparticles and their electrocatalytic activity for oxygen reduction in alkaline media.

نویسندگان

  • Yang Song
  • Ke Liu
  • Shaowei Chen
چکیده

Bimetallic AgAu Janus nanoparticles were prepared by galvanic exchange reactions of 1-hexanethiolate-passivated silver (AgC6) nanoparticles with gold(I)-mercaptopropanediol complex. The AgC6 nanoparticles were deposited onto a solid substrate surface by the Langmuir-Blodgett method such that the galvanic exchange reactions were limited to the top face of the nanoparticles that was in direct contact with the gold(I) complex solution. The resulting nanoparticles exhibited an asymmetrical distribution not only of the organic capping ligands on the nanoparticle surface but also of the metal elements in the nanoparticle cores, in contrast to the bulk-exchange counterparts where these distributions were homogeneous within the nanoparticles, as manifested in contact angle, UV-vis, XPS, and TEM measurements. More interestingly, despite a minimal loading of Au onto the Ag nanoparticles, the bimetallic AgAu nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to the monometal AgC6 nanoparticles. Additionally, the electrocatalytic performance of the Janus nanoparticles was markedly better than the bulk-exchange ones, suggesting that the segregated distribution of the polar ligands from the apolar ones might further facilitate charge transfer from Ag to Au in the nanoparticle cores, leading to additional improvement of the adsorption and reduction of oxygen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media.

1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu allo...

متن کامل

Carbon Supported Oxide-Rich Pd-Cu Bimetallic Electrocatalysts for Ethanol Electrooxidation in Alkaline Media Enhanced by Cu/CuOx

Different proportions of oxide-rich PdCu/C nanoparticle catalysts were prepared by the NaBH4 reduction method, and their compositions were tuned by the molar ratios of the metal precursors. Among them, oxide-rich Pd0.9Cu0.1/C (Pd:Cu = 9:1, metal atomic ratio) exhibits the highest electrocatalytic activity for ethanol oxidation reaction (EOR) in alkaline media. X-ray photoelectron spectroscopy (...

متن کامل

Shape-controlled synthesis of porous AuPt nanoparticles and their superior electrocatalytic activity for oxygen reduction reaction

Control of structure and morphology of Pt-based nanomaterials is of great importance for electrochemical energy conversions. In this work, we report an efficient one-step synthesis of bimetallic porous AuPt nanoparticles (PAuPt NPs) in an aqueous solution. The proposed synthesis is performed by a simple stirring treatment of an aqueous reactive mixture including K2PtCl4, HAuCl4, Pluronic F127 a...

متن کامل

Dealloyed Pt-based Core-Shell Oxygen Reduction Electrocatalysts

Dealloyed Pt core-shell nanoparticles constitute the most active and stable bimetallic oxygen reduction catalysts for low-temperature fuel cells. Here, we review recent advances on their preparation, structural characterization, and electrocatalytic performance. Starting with bimetallic metal overlayer model systems, for which we illustrate fundamental principles of the ORR activity enhancement...

متن کامل

Ni@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media

Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 28 49  شماره 

صفحات  -

تاریخ انتشار 2012